
Int. J. Computational Science and Engineering, Vol. 3, No. 1, 2007 71 

Copyright © 2007 Inderscience Enterprises Ltd. 

Texture mapping on 3D surfaces using clustering-
based cutting paths 

Tong-Yee Lee* and Shao-Wei Yen 
Computer Graphics Group/Visual System Lab (CGVSL), 
Department of Computer Science and Information Engineering,  
National Cheng-Kung University, Tainan, 
Taiwan, Republic of China 
Email: tonylee@mail.ncku.edu.tw 
*Corresponding author 

Abstract: Texture mapping is a common technique in computer graphics used to render realistic 
images. Our goal is to achieve distortion-free texture mapping on arbitrary 3D surfaces. To 
texture 3D models, we propose a scheme to flatten 3D surfaces into a 2D parametric domain. Our 
method does not require the 2D boundary of flattened surfaces to be stationary. The proposed 
method consists of three steps: (1) we find high distortion areas in a 2D parametric domain and 
find a cutting path over these areas, (2) we add virtual points to adaptively find the better 
parametric domain boundary instead of a predefined boundary and (3) we perform a well-known 
smoothing technique for better texture mapping. The proposed scheme can be efficiently realised 
by a linear system and yields interactive performance. Several experimental results for both 
genus-0 and non-genus-0 models are presented to verify the proposed scheme.  

Keywords: clustering; cutting path; parameterisation; texture stretch; virtual points. 

Reference to this paper should be made as follows: Lee, T-Y. and Yen, S-W. (2007) ‘Texture 
mapping on 3D surfaces using clustering-based cutting paths’, Int. J. Computational Science and 
Engineering, Vol. 3, No. 1, pp.71–79. 

Biographical notes: Prof. Tong-Yee Lee received his PhD in computer engineering from 
Washington State University, Pullman, in May 1995. Now, he is a Professor in the department of 
Computer Science and Information Engineering at National Cheng-Kung University in Tainan, 
Taiwan, Republic of China. He serves as an associate editor for IEEE Transactions on 
Information Technology in Biomedicine from 2000 to 2007. He is also on the Editorial Advisory 
Board of Journal Recent Patents on Engineering, editor for Journal of Information Science and 
Engineering and region editor for Journal of Software Engineering. His current research interests 
include computer graphics, non-photorealistic rendering, image-based rendering, visualization, 
virtual reality, surgical simulation, medical visualization and medical system, distributed & 
collaborative virtual environment. He leads a Computer Graphics Group/Visual System Lab at 
National Cheng-Kung University. He is a member of the IEEE and ACM. 

Shao-Wei Yen  received the BS degree in civil engineering from National Taiwan University, 
Taiwan, in 2000. He is currently working toward the PhD degree in the Department of Computer 
Science and Information Engineering, National Cheng-Kung University. His research interests 
include computer graphics and mesh parameterisation. 

 

1 Introduction  

Texture mapping is one of the most important techniques in 
computer graphics. It can enhance the reality of computer-
generated 3D models. The most common way to texture 3D 
surfaces is to map the surface into an isomorphic planar 
representation. This operation is called surface 
parameterisation or surface flattening. This planar 
representation is called embedding. Except for simple 
surfaces, such as cylinders, the surface parameterisation 
always creates surface distortions in the 2D parametric 
domain. If we directly texture map this 2D parameterisation, 
the texture mapped onto a 3D surface is also distorted. It is a 
well-known differential geometry theorem that no isometric 

parameterisation is in the plane for a general surface patch 
(Ahlfors and Sario, 1960). Hence, there is no easy way to 
parameterise a general 3D surface over a 2D domain 
without introducing distortion. In this paper, the proposed 
method attempts to minimise the distortion in surface 
parameterisation and produces a distortion-free texture 
mapping on arbitrary 3D surfaces.  

There have been many texture mapping methods 
proposed (Tutte, 1960; Maillot, Yahia and Verroust, 1993; 
Pinkall and Polthier, 1993; Floater, 1997; Hormann and 
Greiner, 2000; Piponi and Borshukov, 2000; Sander et al., 
2001; Gu, Gortler and Hoppe, 2002; Lévy et al., 2002; 
Sheffer and Sturler, 2002; Sorkine et al., 2002; Zigelman, 
Kimmel and Kiryati, 2002; Lee and Huang, 2003). Most of 



72 T-Y. Lee and S-W. Yen  

them discuss the issue of surface parameterisation. In 
general, the topology of 3D surface meshes always are the 
same with a disk, because the connectivity of 3D surface 
meshes will have no changes and can be mapped to a plane 
during the surface parameterisation process. Maillot, Yahia 
and Verroust (1993) group the facets by their normals and 
attempt to reduce distortion by minimising a norm of the 
Green-Lagrange deformation tensor. Eck et al. (1995) use 
harmonic maps to minimise the distortion energy. Float 
(Floater, 1997) maps a disk-like open mesh to a plane. This 
approach can be solved efficiently by solving a linear 
system, however, the boundary vertices are required to be 
on a convex 2D polygon. Hormann and Greiner (2000) 
derive their deformation function from the ratio of singular 
values about the mapping function. This method does not 
require the boundary vertices to be fixed onto a convex 2D 
polygon. However, its computational cost is expensive. 
Sander et al. (2001) define a non-linear texture stretch 
metric for surface parameterisation. This approach uses a 
relaxation approach to iteratively flatten the 3D surfaces. 
Their texture stretch metric produces better results than 
those of several previous methods (Maillot, Yahia and 
Verroust, 1993; Eck et al., 1995; Hormann and Greiner, 
2000). However, this technique may need lots of iterations 
for computing the optimal mapping. Sorkine et al. (2002) 
introduce a bounded-distortion parameterisation to 
guarantee that each triangle’s distortion will strictly be 
below a user-defined threshold. This method does not need 
to map the surface into a convex region and automatically 
maps the boundary to the plane. For complicated 3D 
models, it would create many patches and become more 
discontinuous in texture mapping. Zigelman, Kimmel and 
Kiryati (2002) map the open mesh onto a plane using a 
multi-dimensional scaling method that tries to preserve the 
geodesic distance criterion. This method does not ensure no 
self-intersections between the triangles and the computation 
cost is expensive because of the geodesic distance 
calculations. Lévy et al. (2002) approximate the conformal 
maps with least square sense. This mapping approach does 
not need to fix boundary and the computation can be 
performed efficiently. However, this approach may generate 
fold-over maps after parameterisation. 

Among the previous works, the proposed scheme is 
most related to (Piponi and Borshukov, 2000; Gu, Gortler 
and Hoppe, 2002). Piponi and Borshukov (2000) cut the 
closed surface and then use the cut seams as the boundaries 
for parameterisation. They also blend the seams to reduce 
the discontinuity effect. This method may need lots of user-
interactions to define the boundaries to the 2D plane. In 
contrast to Piponi and Borshukov (2000), our proposed 
method would avoid iterations using a standard numerical 
method to solve the linear system quickly. Gu, Gortler and 
Hoppe (2002) propose a method for cutting through high 
distortion area in the parametric domain. They use an 
iteration procedure that finds only one path to cut at a time 
until the distortion is below some prescribed threshold 
value. In contrast to this method, our proposed method can 
cut over all high distortion regions using a clustering 

strategy. In addition, there have been many clustering 
approaches proposed in computer graphics research. Kalvin 
and Taylor (1996) merge faces into face clusters to achieve 
the mesh simplification. Willmott, Heckbert and Garland 
(1999) propose a hierarchical face-clustering algorithm that 
provides an efficient radiosity simulation. Sander et al. 
(2001) apply the merge operation to partition meshes into 
charts to their progressive mesh parameterisation.  

2 Methodology  

Generally, parameterisation techniques can be classified 
into two types: (1) fixed boundaries in the parametric 
domain and (2) non-fixed boundaries. The methods with 
fixed boundaries often have large distortions because the 
boundary shapes of the original 3D models are very 
different from those of their flattened surfaces in the 2D 
domain. The proposed method can fast flatten arbitrary 3D 
surfaces without the fixed boundary constraints. The main 
contribution of this paper is to present a faster and a lower 
texture stretch scheme for texture mapping on 3D surface. 
To reduce texture stretch, we propose a clustering strategy 
to find a cutting path for reparameterisation and apply 
virtual points and smoothing for further reduction in texture 
stretch. In addition, the proposed method can handle both 
genus-0 and non-genus-0 models.  

2.1 The initial set-up  

Figure 1 is the flow chart of the proposed scheme. We will 
explain in detail for the last three steps in later sections.  

Figure 1 Flow chart of the proposed scheme 

 

To flatten a model into the 2D domain, we require the 3D 
model topology to be consistent with an open disk. If the 3D 
model has a closed surface, we must first cut the model to 
make the topology equivalent to an open disk. The user can 
interactively perform the cut procedure in our system. For 
models with genus greater than 1, we use some guide rules 
to cut all of them to a disk-like surface described as follows. 
For a torus with genus 1, which has one hole, a valid cut 
exists and consists of two closed paths like Figure 2(a). The 
two cut paths form the primitive cut set Cset for one hole. 
For a model with genus 2 like Figure 2(b), we need two cut 



 Texture mapping on 3D surfaces 73 

sets 1
setC  and 2

setC  to cut the surface. Once the two cut sets 
do not connect to each other, we add a path with no self-
intersection to link the two sets. The surface with genus 2 
can then be cut to a topological disk (see Figure 2(c)). By 
applying the same rule, a model with genus g must first find 
g primitive cut sets 1 2 g

set set set, ,...,C C C  and then paths are 
added to link all of them. 

Figure 2 (a) a torus model with one cut set, (b) connected cut 
sets and (c) unconnected cut set  

 

After cutting a 3D model to a disk-like surface, we utilise a 
relaxation-based scheme from our previous work (Lee and 
Huang, 2003) to parameterise the 3D model into the 2D 
circular embedding. This surface parameterisation can be 
solved using a sparse linear system. The relaxation equation 
is shown in Equation (1). To simulate a spring-mass system, 
we select w as the inverse of the edge length in 3D. Later in 
Section 2.3, we will explain the choice of the spring-mass 
system.  

1'

1

( )
(1 )

i

i

k
j jj

i i k
jj

w p
p p

w
λ λ =

=

= − +
∑
∑

 (1) 

where w, weight; λ, the speed of relaxation; pj, 1-ring 
neighbouring vertices of pi. 

2.2 Reducing distortion using clustering and cutting  

After the surface is parameterised into a circular embedding 
using the relaxation-based scheme, we find many vertices 
clustered in some areas of the embedding.  

These clustered areas always have higher parametric 
distortion. Gu, Gortler and Hoppe (2002) suggest using 
cutting to reduce the distortion. Their parameterisation 
approach iteratively finds regions of maximal distortion and 
connects the regions to the boundary using a path. However, 
this is very computationally expensive to repetitively 
execute parameterisation and find each region with maximal 
distortion. In contrast, the proposed method does not require 
repetitive surface parameterisation. We propose a clustering 
algorithm to find a cutting path going through the distorted 
areas. We then connect the cutting path to the boundary, cut 
the model and then execute the surface parameterisation. 
Our clustering scheme is described in the following:  

 
 

2.2.1 Clustering algorithm  

1. Determine the vertices that would be joined to the 
computation of clustering algorithm. In our 
implementation, we calculate texture stretch L (Sander 
et al., 2001) of all vertices. If its texture stretch value is 
larger than the mean of all vertices, it would be added 
into a queue for clustering calculation. The texture 
stretch L can be defined in the following equation: 

2 2( ) ( ) / 2L T Γ γ= +  

where Γ and γ represent the largest and smallest scale 
value while mapping a unit length from parametric 
domain to 3D surface domain, and T is a triangle of the 
mesh.  

2. Define a Guassian function GR that indicates the 
effective region of a cluster. 

2 2| || /( ) iC P R
R iG C P e− −− =  

 C: vertex uv position on the parametric domain  

 Pi: the position of i-th cluster’s centre  

 R: the cluster radius. 

3. Initialise the first cluster. We choose the vertex with the 
maximum texture stretch value to be the centre of the 
first cluster.  

4. Calculate the centres of the other clusters  

  repeat  

  arg j max (N(Cj; P1,…, PM, j =1…n)) 
  until (N(Cj; P1,…, PM) ≤ ε 

Pi: clusters which have already been determined  

Cj: uv position of the vertex j  

ε: defined value for the termination of repeat loop 

The definition of function N is below:  

1 1
( ; ,.... ) [1 ( )]

M
j M R kk

N C P P G C P
=

= − −∏  

 where the N function can be thought as the probability 
that vertex Cj is not be- longing to other clusters 
P1,...,PM.  

From the above procedure, we determine all cluster centres. 
For each loop, the proposed clustering algorithm will 
determine the vertex that is the most irrelevant to the other 
clusters. If the function N value is less than the user-defined 
threshold ε, the clustering procedure would be terminated. 
Figure 3 shows an example of clustering and three centres 
are found. 
 

 

 



74 T-Y. Lee and S-W. Yen  

Figure 3 A bunny model and its clustering result (solid white 
points are the centre of the clusters)  

 

2.2.2 Minimal spanning tree cutting 

After executing clustering algorithm, we need to get a path 
to connect all clusters and connect this path to the boundary 
in the embedding. For this purpose, we find a tree to 
connect these cluster centres. In our implementation, we 
adopt the standard Kruskal’s minimal spanning tree 
algorithm. To assign the weight of a graph edge, we 
combine both the edge length and the texture stretch 
together. We attempt to find a minimal spanning tree that is 
over high distortion areas and has the minimal path length. 
The cutting path is founded using the following steps:  

1 For each pair of clusters, we compute the shortest path. 
The edge weight is set using the following equation: 

Edge Weight = 3D length + 1/(texture stretch)  

2 We then obtain a complete graph for connecting all 
clusters  

3 Calculate the minimal spanning tree of this complete 
graph.  

2.3 Virtual points  

Once the cutting path is found, we cut the model and 
reparameterise the model to a circular embedding again. At 
this stage, the boundary of the embedding is still fixed. In 
this section, we will add virtual points to pull the boundary 
of this circular embedding and to adaptively modify the 
boundary for reducing distortion.  

The circular embedding in our system is a simulation of 
the spring-mass system. Each edge of a 3D model is placed 
with a spring. The potential energy of a spring is equal to 
E = (1/2)Kx2. K is the spring constant and x is the length of 
the spring. In our set-up, K is equal to the inverse of its 
corresponding 3D edge length. Then the total energy of the 
whole mesh is  

2
total

( , ) Edge

1 ( ( )) ( ( )) ,
2

i j

ij i i
v v

E K f v f v
∈

= −∑  (2) 

where f(v) is the uv position in the 2D parametric domain. If 
the system reaches stable equilibrium, the total energy Etotal 
would be minimised. Then the minimisation of the total 
energy can be realised using a linear system (Greiner and 
Hormann, 1997).  

In the outside of the circular embedding, for each 
boundary vertex, we put a corresponding vertex called 
virtual point along the direction from the centre of the circle 
to the boundary vertex (Figure 4). We add a virtual spring 
between a boundary vertex and a virtual point. The spring 
constant of each virtual point is in the proportion to the 
inverse of the 3D length the distance of the shortest path 
from a boundary vertex to the centre. The virtual springs 
then pull each boundary vertex outward. With adding these 
extra virtual points, we have the flexibility to redefine the 
boundary positions and can potentially reduce the distortion 
of parameterisation.  

Figure 4 The vertices of outside circle is virtual points  

 

For calculating the spring constants of boundaries, we may 
directly apply the Dijkstra’s single source shortest path 
algorithm to compute the 3D surface length. Because the 
path computation is limited on triangle edges, this method 
may not always produce good and smooth results (Figure 5, 
left). For this problem, we can subdivide the 3D mesh to 
increase the accuracy of the 3D path length, but it is 
computationally expensive. Alternatively, we find each path 
directly from the embedding by a line connects the centre to 
each boundary vertex (see an example in Figure 5, right). 
We then find line intersections and compute their 
corresponding 3D positions. In this manner, we can obtain 
an approximately shortest path in 3D. Finally, similar to 
(Lee and Huang, 2003), we can organise this spring-based 
system as a sparse linear system and we can solve it 
numerically.  

Figure 5 The line is between a boundary vertex and the centre of 
the embedding  

 



 Texture mapping on 3D surfaces 75 

2.4 Smoothing  

Smoothing is the last step of our procedure. The main 
smoothing concept involves warping the texture used for 
texture mapping. The mapping distortion can then be further 
improved. Figure 6 illustrates the effects of smoothing for 
texture mapping. In the current implementation, we do not 
actually warp the texture. Alternatively, we further smooth 
the embedding by the method in (Sheffer and Sturler, 2002). 
However, we adopt texture stretch (Sander et al., 2001) to 
be our distortion ratio instead of the edge ratio of 2D edge 
length and 3D edge length in (Sheffer and Sturler, 2002).  

Figure 6 Left: texture mapping without smoothing. Right: 
texture mapping with smoothing 

 

The smoothing procedure is described briefly as follows:  

1 Create a bounded square B for the flattened map, and 
make a Cartesian grid G as shown in Figure 7. 
Consequently, we can easily warp the texture map by 
the grid map G.  

2 For each grid point Ni, compute the texture stretch Li. 
The Li is the texture stretch for the triangle encloses the 
grid point. 

3 For each grid edge e = (Na, Nb ), calculate its distortion 

( )
2

a bL L
l e

+
= . If the grid point Na (or Nb ) is outside 

the flatten map, we assign the La (or Lb ) to the average 
texture stretch on whole model.  

4 For each grid point Ni, compute its position Pi 
iteratively.  

( , )

( , )

1
( )

1
( )

i j

i j

j
e N N

i

e N N

P
l e

P

l e

=

=

=

∑

∑
 

 where Nj is the neighbour grid points of Ni. The system 
is similar to parameterisation relaxation scheme, so we 
can also solve the sparse linear system efficiently.  

5 Warp the flattened map by the smoothing texture map 
(grid map G).  

 

Figure 7 Left: a grid map of bounded square; Right: smoothing 
results of grid map 

 

3 Experimental results  
In this section, we first compare our cutting strategy and the 
cutting method in Gu, Gortler and Hoppe (2002). We 
compute eight different examples shown in Figures 8–15. 
And the least three models have topology with genus 1 or 
genus 2. The statistical results are shown in Table 1. In 
experimental comparison with (Gu, Gortler and Hoppe, 
2002), our improved stretch ratio in Table 1 varies from +7 
to +42% except for Figure 9, i.e. –1%. Furthermore, the 
computation overhead of (Gu, Gortler and Hoppe, 2002) 
requires much more time than our method. We demonstrate 
the same eight examples to verify the proposed scheme. In 
these examples, we show  

1 original model 

2 circular embedding and cutting path from the proposed 
clustering scheme 

3 embedding after pulling by virtual points and finally  

4 model with texture after smoothing.  

To better visualise the cutting, we colour the embedding. 
The region with a warm colour has larger distortion than 
that of the region with a cool colour. From these figures, the 
clustering centres are always located in the regions with a 
warm colour. Furthermore, the paths also go through the 
warm colour regions. We show the quantity information in 
Table 2 for these eight examples. In this table, we measure 
the quality of texture mapping using mean texture stretch 
ratio (Sander et al., 2001). The ideal mean stretch ratio is 
equal to one. The experimental measurement shows this 
stretch metric can be further improved using the consecutive 
steps of the proposed method. Each step of the proposed 
method is executed in few seconds on a PC with Pentium III 
1 GHz and 256 MB RAM. Therefore, we can interactively 
perform texture mapping on arbitrary 3D surfaces. The user 
can also optionally bypass some step of the proposed 
method if the current results are good enough. For example, 
we can bypass the smoothing or even the cutting if 
satisfactory results are obtained without these steps.  

 

 



76 T-Y. Lee and S-W. Yen  

Figure 8 Left: rabbit model; Middle left: clusters and the connected minimal spanning tree; Middle right: embedding without a fixed 
boundary; and Right: rabbit with texture  

 

Figure 9 Left: pig model; Middle left: clusters and the connected minimal spanning tree; Middle right: embedding without a fixed 
boundary; and Right: pig with texture  

 

Figure 10 Left: dinosaur model; Middle left: clusters and the connected minimal spanning tree; Middle right: embedding without a fixed 
boundary; and Right: dinosaur with texture  

 

Figure 11 Left: head model; Middle left: clusters and the connected minimal spanning tree; Middle right: embedding without a fixed 
boundary; and Right: head with texture  

 

Figure 12 Left: ball model; Middle left: clusters and the connected minimal spanning tree; Middle right: embedding without a fixed 
boundary; and Right: ball with texture  

 



 Texture mapping on 3D surfaces 77 

Figure 13 Left: knot model; Middle left: clusters and the connected minimal spanning tree; Middle right: embedding without a fixed 
boundary; and Right: knot with texture  

 

Figure 14 Left: two-holes model; Middle left: clusters and the connected minimal spanning tree; Middle right: embedding without a fixed 
boundary; and Right: two-holes with texture  

 

Figure 15 Left: holed-pig model; Middle left: clusters and the connected minimal spanning tree; Middle right: embedding without a fixed 
boundary; and Right: holed-pig with texture  

 

Table 1 Comparison between proposed method and Gu, Gortler and Hoppe (2002) 

Model Rabbit Pig Dinosaur Head Ball Knot Two-holes Holed-pig 
No. of vertices 263 3584 2917 1954 1760 1920 2522 3865 
No. of triangles 522 7164 5660 3904 3516 3840 5048 7372 
Texture stretch (S1) after  
cut (Gu, Gortler and Hoppe, 2002) 

1.352 1.712 1.936 1.632 1.237 2.346 2.526 2.264 

Texture stretch (S2) after cut  
(our method) 

1.256 1.731 1.12 1.285 1.096 1.837 1.603 1.516 

improved stretch ratio 
((S1-S2)/S1)% 

7.1 –1.1 42.1 21.3 11.4 21.7 36.5 33.0 

Run time for cut and flattening  
(Gu, Gortler and Hoppe, 2002) 

19 s 372 s 327 s 243 s 139 s 251 s 302 s 403 s 

run time for cut and flattening  
(our methods) 

2 s 13 s 10 s 7 s 6 s 7 s 9 s 14 s 

 

 

 

 



78 T-Y. Lee and S-W. Yen  

Table 2 Mean texture stretch ratio statistics for five examples 

Model Rabbit Pig Dinosaur Head Ball Knot Two-holes Holed-pig 

No. of vertices 296 3684 2917 1954 1760 1920 2522 3865 
No. of triangles 522 7164 5660 3904 3516 3840 5048 7372 
Stretch ratio before clustering 25.101 112.353 18.557 3.504 8.711 6.231 4.519 67.765 
Stretch ratio after clustering 
(without pulling by virtual points) 

1.707 2.539 2.833 2.451 1.353 4.871 3.107 3.124 

Stretch ratio after clustering (with 
pulling by virtual points) 

1.314 2.031 1.851 1.514 1.231 1.951 1.823 1.833 

Stretch ratio after smoothing 1.256 1.731 1.12 1.285 1.096 1.837 1.603 1.516 

 
4 Conclusion and future work  

In this paper, we propose a texture-mapping scheme on 
arbitrary 3D surfaces. This new scheme can be solved very 
efficiently. All experiment results are executed on a PC with 
Pentium III 1 GHz and 256 MB RAM at an interactive 
performance. In contrast to (Gu, Gortler and Hoppe, 2002), 
the computational performance is very promising and 
texture stretch is improved. The proposed method consists 
of several steps. These steps consecutively improve the 
quality of embedding. From the experimental results, the 
stretch ratio for texture mapping on the embedding is 
significantly improved by these steps. In the near future, we 
plan to extend this work to the texture mapping with hard 
constraint problem. We will apply the proposed method to 
model remeshing applications. Texture synthesis over 
arbitrary 3D surfaces is another interesting topic for our 
future work. Given a small sample texture, this technique 
attempts to synthesise a seamless any sized texture pattern 
on 3D surfaces (Wei and Levoy, 2000; Tong et al., 2002). 

Acknowledgements 

This project is supported by National Science Council, 
Taiwan, ROC under Contract No. NSC-92-2213-E-006-066 
and NSC-92-2213-E-006-067.  

References 
Ahlfors, L.V. and Sario, L. (1960) Riemann Surfaces. Princeton, 

NJ: Princeton University Press. 
Dey, T.K. and Schipper, H. (1995) ‘A new technique to compute 

polygonal schema for 2-manifolds with application to null-
homotopy detection’, Discrete and Computational Geometry, 
Vol. 14, pp.93–110. 

Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M. and 
Stuetzle, W. (1995) ‘Multiresolution analysis of arbitrary 
meshes’, Paper presented in the Proceedings of SIGGRAPH, 
pp.173–182. 

Floater, M.S. (1997) ‘Parametrization and smooth approximation 
of surface triangulations’, Computer Aided Geometric Design, 
Vol. 14, pp.231–250. 

Gotsman, C., Gu, X. and Sheffer, A. (2003) ‘Fundamentals of 
Spherical Parameteriza-tion for 3D Meshes’, Paper presented 
in the Proceedings of SIGGRAPH, pp.358–363. 

Greiner, G. and Hormann, K. (1997) ‘Interpolating and 
Approximation Scattered 3D Data with Hierarchical Tensor 
Product B-splines’, in A. Le Méhauté, C. Rabut and L.L. 
Schumaker (Eds), Surface Fitting and Multiresolution 
Methods (pp.163–172). Nashville, TN: Vanderbilt University 
Press. 

Gu, X., Gortler, S.J. and Hoppe, H. (2002) ‘Geometry Images’, 
Paper presented in the Proceedings of SIGGRAPH,  
pp.355–361. 

Hormann, K. and Greiner, G. (2000) ‘MIPS: An efficient global 
parameterization method’, in P-J. Laurent, P. Sablonnière and 
L.L. Schumaker (Eds), Curve and Surface Design: St. Malo 
1999 (pp.153–162). Nashville, TN: Vanderbilt University 
Press. 

Kalvin, A.D. and Taylor, R.H. (1996) ‘Superfaces: polygonal mesh 
simplification with bounded error’, IEEE Computer Graphics 
and Appl., Vol. 16. pp.64–77. 

Lee, T-Y. and Huang, P.H. (2003) ‘Fast and intuitive 
metamorphosis of 3D polyhedral models using SMCC mesh 
merging scheme’, IEEE Transactions on Visualization and 
Computer Graphics, Vol. 9, pp.85–98. 

Lévy, B., Petitjean, S., Ray, N. and Maillot, J. (2002) ‘Least 
Squares Conformal Maps for Automatic Texture Atlas 
Generation’, Paper presented in the Proceedings of 
SIGGRAPH, pp.362–371. 

Maillot, J., Yahia, H. and Verroust, A. (1993) ‘Interactive texture 
mapping’, Paper presented in the Proceedings of SIGGRAPH, 
pp.27–34. 

 

Pinkall, U. and Polthier, K. (1993) ‘Computing discrete minimal 
surfaces and their conjugates’, Experimental Mathematics, 
Vol. 2, pp.15–36. 

Piponi, G. and Borshukov, D. (2000) ‘Seamless Texture Mapping of 
Subdivision Surfaces by Model Pelting and Texture Blending’, 
Paper presented in the Proceedings of SIGGRAPH, pp.471–478. 

Sander, P., Snyder, J., Gortler, S. and Hoppe, H. (2001) ‘Texture 
mapping progressive meshes’, Paper presented in the 
Proceedings of SIGGRAPH, pp.409–416. 

Sheffer, A. and Sturler, E.D. (2002) ‘Smoothing an overlay grid to 
minimize linear distortion in texture mapping’, ACM 
Transactions on Graphics, Vol. 21, pp.874–890. 

Sorkine, O., Cohen-Or, S.D., Goldenthal, R. and Lischinski, D. 
(2002) ‘Bounded-distortion Piecewise Mesh 
Parameterization’, Paper presented in the Proceedings of 
IEEE Visualization, pp.355–362. 

Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B. and Shum, H-Y. 
(2002) ‘Synthesis of Bi-directional Texture Functions on 
Arbitrary Surfaces’, Paper presented in the Proceedings of 
SIGGRAPH, pp.665–672. 



 Texture mapping on 3D surfaces 79 

Tutte, W. (1960) ‘Convex Representation of Graphs’, Paper 
presented in the proceedings of the London Math. Soc.,  
Vol. 10, pp.304–320. 

Wei, L-Y. and Levoy, M. (2000) ‘Fast texture synthesis using tree-
structured vector quan-tization’, Paper presented in the 
Proceedings of SIGGRAPH, pp.479–488. 

Wei, L-Y. and Levoy, M. (2001) ‘Texture synthesis over arbitrary 
manifold surfaces’, Paper presented in the Proceedings of 
SIGGRAPH, pp.355–360. 

Willmott, A.J, Heckbert, P.S. and Garland, M. (1999) Face cluster 
radi-osity, Eurographics Workshop on Rendering. 

Wood, Z., Hoppe, H., Desbrun, M. and Schröder, P. (2004) 
‘Removing excess topology from isosurfaces’, ACM 
Transactions on Graphics, Vol. 23, pp.190–208. 

Zigelman, G., Kimmel, R. and Kiryati, N. (2002) ‘Texture 
mapping using surface flattening via multidimensional 
scaling’, IEEE Transactions on Visualization and Computer 
Graphics, Vol. 8, pp.198–207. 


